
Human identity testing relies on the segregation of polymorphic
alleles into unique combinations in individual human beings.
Because a balance of dispersive and systematic forces has shaped
the genetic structure of modern-day humanity, most human poly-
morphisms are characterized by alleles that are unevenly dis-
tributed among the world’s various populations. In the case of STR
markers, interpopulation differences in allele frequencies can
impact exclusion calculations (1–6), and a classifier for the infer-
ence of ancestry could more objectively delineate the appropriate
reference database(s) for these calculations. Moreover, there is a
critical need for genetic tests that can function in a predictive or
inferential sense before suspects have been identified. For exam-
ple, ancestral classification markers could be (and actually are)
used to assist with the identification of remains and to guide other
types of criminal investigations towards individuals that cannot be
excluded on the basis of ancestry. In some cases, an ancestral clas-
sification result could provide probable cause for the legal request
of DNA from suspects, creating a leverage crux for maximizing the
efficacy of our criminal justice system.

Various probabilistic methods have been proposed for using
interpopulation allele frequency differences to infer the ancestral
origin of a DNA specimen (7–13). For example, Bayesian statisti-
cal schemes have been employed to use allele frequencies in given
populations (class conditional probabilities) to calculate the poste-
rior probability that a DNA sample was derived from an individual
of each particular population. However, most STR markers cur-
rently in use (i.e., F13A, TH01, FES/FPS, and vWA) offer little

power to distinguish between ancestral groups. Log likelihood
values for distinguishing individuals of African from European
descent average log10r � 0.4 per locus, and, assuming a prior
probability of 50% classification in alternative, this means that
wrong decisions would be made 20% of the time (12,14). Although
a collection of such markers may effectively resolve ancestral ori-
gin in most cases, the statistical distributions are such that an unac-
ceptable number (5 to 10%) of classifications are ambiguous (12).
Thus, markers are needed that show more dramatic ancestral bias,
or a very large collection of modestly biased markers needs to be
identified. In fact, screens for STR markers of dramatic ancestral
bias have already been conducted and resulted in the discovery of
numerous non-CODIS loci capable of resolving individuals of Eu-
ropean descent from those of African descent (7). Statistical–infer-
ence methods incorporating these STR markers (among other
marker types) appear to be fairly robust, but there is considerable
debate on their rigor (7,9,12). STR markers typically have a
relatively large number of alleles (often 20 or more) with some
relatively rare compared to alleles from bi-allelic markers, and
population databases of inordinate sample sizes are required for
precise allele frequency estimation. In contrast, bi-allelic tests (i.e.,
SNPs) usually involve the examination of larger numbers of loci
with a simpler allelic structure. Because there are only two alleles
per loci, more SNPs must be examined to obtain the same statisti-
cal power, but the frequency of minor alleles are higher, requiring
fewer individuals from each population to obtain reliable allele
frequency estimates. Thus, smaller reference databases can be used
for SNP-based identity testing and ancestral inference calculations.
In addition, the statistical power to unambiguously infer ancestral
affiliations using SNP-based methods is potentially greater than
with STRs because of the sheer number of SNPs that can be ana-

Copyright © 2003 by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959.

Tony Frudakis,1 Ph.D.; Venkateswarlu K,1 Ph.D.; Matthew J. Thomas,1 Ph.D.; Zach Gaskin,1 B.S.; 
Siva Ginjupalli,1 M.S.; Sitarama Gunturi,1 Ph.D.; Viswanathan Ponnuswamy,1 M.S.; 
Sivamiani Natarajan,1 Ph.D.; and Ponnuswamy Kolathupalayam Nachimuthu,1 Ph.D.

A Classifier for the SNP-Based
Inference of Ancestry

ABSTRACT: Ancestral inference from DNA could serve as an important adjunct for both standard and future human identity testing procedures.
However, current STR methods for the inference of ancestral affiliation have inherent statistical and technical limitations. In an effort to identify bi-
allelic markers that can be used to infer ancestral affiliation from DNA, we screened 211 SNPs in the human pigmentation and xenobiotic
metabolism genes. Allele frequencies of 56 SNPs (most from pigmentation genes) were dramatically different between groups of unrelated
individuals of Asian, African, and European descent, and both observed and simulated log likelihood ratios revealed that the markers were of
exceptional value for ancestral inference. Log likelihood ratios of the multilocus estimates of biological ancestry (EAE/EBA) ranged from 7 to 10,
which are on par with the best of the STR batteries yet described. A linear classification method was developed for incorporating these SNPs into a
classifier model that was 99, 98, and 100% accurate for identifying individuals of European, African, and Asian descent, respectively. The methods
and markers we describe are therefore an important first step for the development of a practical multiplex test for the inference of ancestry in a foren-
sics setting.

KEYWORDS: forensic science, DNA typing, single nucleotide polymorphism, battery, classification, ancestry, ethnicity, genotype, TYR, TYRP1,
OCA2, MCIR, DCT, AP3B1, CYP3A4, CYP2C8, CYP2D6, CYP2C9, CYP1A1, AHR

J Forensic Sci, July 2003, Vol. 48, No. 4
Paper ID JFS2002079_484 

Available online at: www.astm.org

1

1 DNAPrint Genomics, Inc., 900 Cocoanut Ave. Sarasota, FL.
Received 21 Feb. 2002; and in revised form 11 June 2002, 17 Aug. 2002, and

24 Feb. 2003; accepted 24 Feb. 2003; published 22 May 2003.



2 JOURNAL OF FORENSIC SCIENCES

lyzed simultaneously. If recent advances in high-throughput geno-
typing technologies can render SNPs technically and economically
more attractive for routine use, it is likely that future identity
determinations will, at some level, involve SNP typing.

Although SNP-based methods appear to be the wave of the
future, relatively few SNP-based human identity testing or ances-
tral inference products have been developed and/or published.
Further, though most forensic assays are focused on the so-called
“junk” DNA sequences between genes, polymorphisms with bio-
logical and/or functional relevance may represent the best targets
for developing tests capable of the inference of physical character-
istics, which, unlike STR profiles, are shared among individuals. In
this work, we targeted pigmentation and xenobiotic metabolism
genes in our search for ancestrally informative SNPs, because it is
likely that these genes have been subject to unusual selective pres-
sures over the course of human evolution. For example, higher
melanin content protected our African ancestors from UV damage,
while unique xenobiotic metabolism sequences were probably ben-
eficial to our ancestors who were exposed to specific alkaloids or
tannins in their diet. We show here that the human pigmentation
and xenobiotic metabolism genes in fact do exhibit extraordinary
ancestral diversity. In particular, alleles for 56 SNP loci within
these genes can be used with a linear statistical method to comprise
a “classifier” for inferring the ancestral origin of a DNA specimen
with exceptional accuracy. Our results comprise what we believe to
be the first SNP-based method for inferring the ethnic origin of a
DNA specimen. Since size separation steps would be obviated with
our method, the battery we describe may constitute a practical
and economical substitute for STR testing when ancestral inference
is the primary objective or when results are needed in the field.
Combined with STR results, our method offers an independent
method by which to validate STR-based ancestral inferences that
are useful for selecting the appropriate reference database for
exclusion calculations.

Methods

Data Collection

Specimens and basic biographical data were obtained from a
convenient sample of individuals of self-reported African, Asian,
and European descent within the state of Florida under informed
consent guidelines. We offered our subjects ample opportunity to
express ambiguity when self-reporting race—there was a set of
boxes for reporting racial mixtures. In this study, we used only
individuals that reported themselves to be part of a single racial
(ancestral) group. We extracted DNA from circulating lympho-
cytes or buccal swabs using commercial (Promega, Madison, WI)
preparation kits.

SNP Identification

Vertical resequencing (sequencing the same region in many
individuals) was performed by amplifying promoter, exon, flank-
ing intron, and 3�UTR sequences from a multiethnic panel of 370
unrelated individuals for whom only ancestry was known. PCR
amplification was accomplished using pfu Turbo, according to the
manufacturer’s guidelines (Stratagene). We developed a program
to design resequencing primers to ensure the region of interest was
amplified without co-amplification of pseudo genes or other
homologous genes. This is accomplished by analyzing the
sequence file of interest in tandem with all other flat files identified
through BLAST searches to have homology with this sequence.
The program also ensures that the maximum number of relevant

regions is included in the fewest possible number of amplicons.
Amplification products were subcloned into the pTOPO (Invitro-
gen) sequencing vector. Ninety-six insert positive colonies were
grown, and plasmid DNA was isolated and sequenced using PE
Applied Biosystems BDT chemistry and an ABI3700. Sequences
were deposited into a commercial relational database system
(iFINCH, Geospiza, Seattle, WA). The resulting sequences were
aligned and analyzed using another program that we developed to
align sequences (using Clustal X) within each amplification region,
identify discrepancies between these sequences, and qualify the
discrepancies as candidate SNPs using PHRED quality metrics.
The collection of candidate SNPs identified via resequencing was
augmented with candidates obtained from the NCBI:dbSNP
database. We developed a java-based program to download, orga-
nize, and format candidate SNP sequences for primer design and
assay formatting. Genotyping assays were formatted using the
Autoprimer software (Orchid Biosciences, Princeton, NJ).

Genotyping

We used a novel nested PCR approach to front-end a primer
extension protocol employing a 25K SNPstream genotyping
system (Orchid Biosciences, Princeton, NJ). A first round of PCR
was performed on these samples using the high-fidelity DNA poly-
merase pfu turbo. Because the primers for this step were the same
primers that were used for resequencing, they were known to not
cross-react with other competing sequences in the genome. The
resulting PCR products were checked on an agarose gel, diluted,
and then used as a template for a second round of PCR incorporat-
ing phosphothionated primers. We observed a higher specificity
when using this nested genotyping approach than when using a
single amplification protocol, presumably because most of the
genes we targeted were members of multi-gene families and
because of BLAST algorithm deficiencies and public sequence
database limitations (incompleteness).

Statistical Analysis

To use the SNP alleles we have identified for ancestral inference,
we wrote a software program for using a parametric, multivariate
linear classification (14), and quadratic classification technique
(15,16) with their modifications for genomics data (17,18). Under
the assumption that the samples have been taken from multivariate
normal distributions with different mean vectors and common vari-
ance covariance matrix, linear classification procedures introduced
previously (14,19–21) can be applied. However, if the populations
have different variance covariance matrices, a quadratic classifica-
tion procedure should be used. We used the same scoring method
as Smouse and Neel (17) used. We have given a score of 1 if the
individual is homozygous for the first allele, score of 1⁄2 if the
individual is heterozygous, and score 0 if the individual is
homozygous for the minor allele (last allele). For the linear classi-
fication method, the pooled within-population variance-covariance
matrix can be computed from:

S � �
p
i�1 �Ni

j�1(Yij � �i)(Yij � �i)�/�(Ni � 1) (1)

where Yij is the vector of scores for the jth individual in the ith pop-
ulation, and �i and Ni are the vector of means and sample size for
the ith population. By scoring one allele only, we avoid the linear
dependence problem that could lead to matrix singularity. The
components for these vectors could be surrogate values for SNP
alleles, each dimension of the vector representing a different locus.
The components may or may not be linked to one another in



gametic disequilibrium (i.e., may or may not be part of a haplotype
system). Indeed, this is a strength of the method—it is equally
applicable to SNPs on different chromosomes as to those within a
particular gene. The generalized distance of the ijth individual from
the mean of the kth population can be computed from:

D2
ij,k � (Yij � �k)�S�1(Yij � �k) for k � i (2)

The vector Yij is used to calculate �k, the mean of its own popula-
tion. To avoid circularity caused by this, Smouse and Neel (17)
used a correction when comparing an individual with the mean of
its own population:

D2
ij,i � (Ni/(Ni � 1))2 (Yij � �i)�S�1(Yij � �i) (3)

We allocate the ijth individual to that population for which Eq 2 or
Eq 3 is minimum. The result of applying Eqs 2 and 3 is an inclu-
sion or exclusion probability matrix for the various populations.

We also implemented a quadratic classification procedure for
genetic classification, where the quadratic discriminant score for
the ith population is:

D2
ij,k � ln Sk � (Yij � �k)�Sk

�1(Yij � �k) 

for k � 1,2, . . . g(populations) (4)

Classification is then simply the allocation of the ijth individual to
that population for which Eq 4 is minimum. However, in this work,
we restricted our attention to the linear classification procedure
because of monomorphic loci in some of the groups for some of the
loci, which results in an inability to apply the quadratic method due
to singularity of the matrix Sk of Eq 4.

Both linear and quadratic methods can be algebraically simpli-
fied for dealing with SNP data. Kurczynski (22) provided the ana-
lytical solution for the inverse of the variance-covariance matrix,
and Chakraborty (23) described the computational equations for
using n alleles per loci (when we score n–1 alleles per loci). Here
we derived the analytical solution to the linear discriminate func-
tion for bi-allelic loci. The ith individual’s discriminate function
can be calculated in the following way.

Case 1. If the individual is homozygous for the major allele:

Dij � P2
j,2/(Q1 Q2) (5)

Case 2. If the individual is heterozygous:

Dij � (1/2 � P1,j)2/(Q1 Q2) (6)

Case 3. If the individual is homozygous for minor allele:

Dij � P2
1,j/(Q1 Q2) (7)

where, Q1, Q2 are the global allele frequencies (average allele
frequencies over all populations for major and minor alleles), and
P1j and P2j are the major and minor allele frequencies in the jth pop-
ulation. Dij is the discriminant value of the ith individual in the jth
population. For L loci, we repeat calculations (Eqs 5 to7), add the
sum, and then calculate the discriminate value for all populations.
We assign the ith individual to the jth population for which Dij is
smallest.

Results

To identify SNP markers useful for ancestral classification, we
analyzed SNPs in the human pigmentation and xenobiotic

metabolism genes TYR, TYRP1, OCA2, MC1R, DCT, AP3B1,
CYP3A4, CYP2C8, CYP2D6, CYP2C9, CYP1A1 and AHR. We
specifically targeted SNPs in these genes expecting that their
sequences had been subject to unusually strong systematic genetic
forces over time (they function in dietary tolerance, physical
appearance, and/or ultraviolet radiation protection). To identify
novel candidate SNPs in these genes, the promoter, exon, and
3�UTR regions for each was amplified and sequenced from an
ancestrally diverse pool of 370 individuals. We used these SNPs to
enhance a collection obtained by mining a public database
(NCBI:dbSNP); the aggregate number of candidate SNPs per gene
obtained from both sources was 70. Genotypes for 175 select
candidate SNP loci were obtained from 100 unrelated individuals
of European descent, 100 unrelated individuals of African descent,
and 30 unrelated individuals of Asian descent (different individu-
als than those used for resequencing). The frequencies of the minor
alleles ranged from zero (unvalidated SNPs) to 48%. Approxi-
mately one half of the candidate SNPs revealed clear genotype
classes with a minor allele frequency greater than 0.005 in at least
one ancestral group. Fifty-six of these SNPs had genotype distri-
butions and allele frequencies that were statistically distinct (some-
times dramatically) between the three major ancestral groups tested
(individuals of Asian, African, or European descent) (Appendix I).
A breakdown of the ancestral bias for the 15 best markers based on
nucleotides shows that there is no relationship between the specific
nucleotide composition of a genotype and its ancestral affiliation
(data not shown). For example, 2/9 markers for which the A allele
was informative were useful for inferring inclusion in the AI group,
4/9 in the CA group, and 3/9 in the AA group. All but three of the
SNP markers analyzed had allele distributions that were in the
Hardy-Wienberg Equilibrium (HWE) (data not shown). Relative to
the number of SNPs tested per gene, the pigmentation genes OCA2,
TYR, and TYRP1 (in decreasing order) had minor alleles with fre-
quencies that were most often distinct between the ancestral
groups. The frequency of ancestrally informative SNPs of the total
observed in the pigmentation genes was 85 versus 61% for xenobi-
otic metabolism genes and 28% for other genes (the FDPS and
HMGCR genes) (Table 1). Sampling bias does not appear to be the
source of these ancestrally informative SNPs, since such a mecha-
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TABLE 1—SNPs/gene with alleles differentially distributed
among the ancestral groups.

% Ancestrally
Gene* Validated SNPs Informative SNPs†

OCA2 21 95
TYRP1 9 89
TYR 15 80
CYP2D6 30 57
CYP2C9 16 50
CYP3A4 16 50
MC1R 6 50
CYP1A1 14 50
AHR 27 33
HMGCR 13 31
FDPS 8 25

Avg. 16 56

* Each gene is identified by NCBI nomenclature. Pigmentation genes
are shown in bold print.

† The number of SNP loci that were informative for ancestry (deter-
mined using the � value), divided by the total number of SNP loci in each
gene.
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nism would not explain why 80% of the SNPs found in pigmenta-
tion genes were ancestrally informative, while only 20% of those
found in nonpigmentation/xenobiotic metabolism genes were
informative.

Average log-likelihood ratios, which are called ethnic affiliation
estimates or estimates of biological ancestry (EAE/EBAs), and �
values representing allele frequency difference between two popu-
lations are presented in Table 2 for all 56 markers. Some of the
markers were better at resolving between AA and AI individuals
than AA and CA or CA and AI individuals (i.e., marker 886994,

Row 3, Table 2), and others were better at resolving between AA
and CA individuals (i.e., Marker 217455, Row 22, Table 2), while
others still were better at resolving between CA and AI individuals
(i.e., Marker 217486, Row 17, Table 2).

We developed an algorithm to construct a linear classifier incor-
porating alleles of these SNPs. The algorithm used a representation
of individual samples (individuals) as n-dimensional vectors
(where n � number of markers) and average distances between
individual vectors and population (ancestry) mean vectors to com-
pute a pooled variance-covariance matrix for each population.

TABLE 2—Allele frequency differences (�) and log likelihood estimates (EAE/EBA) of biological ancestry/ethnic affiliation.

EAE/EB
Marker AA/AI –� EAE/EBA CA/AI -� EAE/EBA CA/AA -� A

712064 0.54444 1.274 0.55 1.27498 0.00556 0.00003
664803 0.60556 1.17436 0.02841 0.00337 0.57715 0.9928
886994 0.51667 0.9449 0.22765 0.2915 0.28902 0.15849
886993 0.51111 0.92979 0.22765 0.2915 0.28346 0.1527
712058 0.59444 0.70691 0.73182 1.2717 0.13737 0.07535
712057 0.57778 0.67214 0.67424 0.95882 0.09646 0.02496
712052 0.52778 0.61509 0.3947 0.29256 0.13308 0.05646
886895 0.45556 0.39263 0.62462 0.81055 0.16907 0.07368
869772 0.27222 0.37557 0.01098 0.00519 0.28321 0.52445
217438 0.23889 0.35171 0.17045 0.09993 0.06843 0.06063
869797 0.25 0.30938 0.22159 0.25764 0.02841 0.00195
712055 0.25 0.26484 0.02348 0.00569 0.22652 0.18508
554371 0.32778 0.21146 0.24356 0.10895 0.08422 0.01666
217452 0.19444 0.21076 0.10795 0.0809 0.08649 0.02593
217485 0.18333 0.19233 0.625 1.23512 0.44167 0.38454
712037 0.31667 0.1854 0.19848 0.13821 0.51515 0.66032
217486 0.15556 0.1694 0.60833 1.21223 0.45278 0.40916
869785 0.15556 0.14835 0 0.00508 0.15556 0.22926
615926 0.22778 0.1366 0.1447 0.06193 0.08308 0.01426
217489 0.18889 0.11604 0.56439 0.73705 0.37551 0.25969
712047 0.21111 0.10499 0.06515 0.0077 0.27626 0.17004
217455 0.21111 0.09643 0.34432 0.22042 0.55543 0.60927
869769 0.22778 0.09442 0.30606 0.18041 0.07828 0.01369
869813 0.11667 0.0924 0 0.00508 0.11667 0.15376
869798 0.11111 0.08502 0 0.00508 0.11111 0.14355
756239 0.1 0.07077 0 0.00508 0.1 0.12361
886896 0.11667 0.06764 0.56364 0.83399 0.44697 0.40222
869810 0.07222 0.06558 0.00947 5.40E�04 0.06275 0.05341
756251 0.09444 0.06393 0.1875 0.19919 0.09306 0.0321
951526 0.09444 0.06393 0 0.00508 0.09444 0.11389
664793 0.06667 0.03295 0.02841 0.00337 0.03826 0.01484
712051 0.06667 0.03295 0 0.00508 0.06667 0.06826
615921 0.06111 0.02752 0.01136 9.80E�04 0.04975 0.03746
886933 0.09444 0.0267 0.05947 0.01697 0.15391 0.08743
217468 0.05556 0.0224 0.36932 0.55426 0.31376 0.31315
886937 0.05556 0.0224 0.07955 0.04659 0.02399 0.00401
951497 0.08889 0.01971 0.05833 0.01145 0.14722 0.06154
869784 0.1 0.01775 0.1053 0.01966 0.0053 0.00005
664802 0.05 0.01762 0 0.00508 0.05 0.04375
886894 0.06667 0.01216 0.38598 0.28099 0.45265 0.41206
869794 0.02222 0.01082 0.1428 0.11316 0.16503 0.21113
869745 0.03889 0.00929 0 0.00508 0.03889 0.02902
217480 0 0.00525 0.03409 0.0063 0.03409 0.02315
554353 0 0.00525 0.02841 0.00337 0.02841 0.01668
869777 0.05 0.00464 0.04318 0.00332 0.09318 0.01581
869802 0.02778 0.00384 0.08333 0.09412 0.11111 0.14355
217459 0.02778 0.00309 0 0.00508 0.02778 0.01599
712054 0.03333 0.00201 0.02652 0.00125 0.05985 0.00642
554363 0.01111 0.00127 0.05 0.04321 0.03889 0.02902
217441 0.02222 0.00111 0.07955 0.04659 0.05732 0.03325
886892 0.02222 0.00111 0.10227 0.07363 0.08005 0.05604
554368 0.01111 0.00107 0.02841 0.00337 0.0173 0.00718
886934 0.01111 0.00107 0.08523 0.05302 0.07412 0.06809
869809 0.01667 2.40E�04 0.05114 0.01857 0.03447 0.01732
217456 0 0 0.06856 0.05074 0.06856 0.05074
712043 0 0 0.0803 0.0458 0.0803 0.0458



Using this matrix, the algorithm binned the sample (individual)
into the population for which its distance is lowest. Using the algo-
rithm with data for all 56 markers in 208 of the 230 genotyped
individuals of African (AA, n � 90), Asian (AI; n � 30), and
European (CA, n � 88) descent (same individuals genotyped
previously, no known ancestral mixtures; 22 individuals with miss-
ing data excluded), we observed high corrected probabilities of
including an AA individual in the AA group ( pr � 0.98), an AI
individual in the AI group ( pr � 1.0) and a CA individual in the
CA group ( pr � 0.99) (Table 3). It may be noted that in total, only
2 of 90 AA individuals, 1 of 88 CA individuals, and none of 30 AI

individuals were misclassified by the linear classification proce-
dure. A linear classifier incorporating the 30 and 15 strongest SNPs
from the battery of 56 was capable of correct classification 96% (30
markers) and 91.1% (15 markers) of the time for AAs, 96.7% of the
time for AIs (both 30 and 15 markers), and 99% (30 markers) and
98% of the time for CAs (Table 3B and 3C). Since uncorrected and
corrected ancestral classification probabilities were identical for
each pair-wise comparison, using any number of markers, the
results indicate that the sample size of each population was reason-
able. We also calculated the variance-covariance matrix using 95%
of the individuals and blindly classified the remaining 5% based on
this matrix 1000 times and obtained similar probabilities of correct
classification, suggesting that the classifier will generalize well to
other samples of the same populations (data not shown).

We desired to compare the linear classification method with the
log-likelihood ratio approach described by Shriver et al. (7) for
ancestral affiliation from STR genotypes. Given the exponential
relationship between the number of loci and the number of multi-
locus genotypes, however, it is not possible to directly determine
the distribution of log-likelihood levels when more than a few loci
are used. Instead, we used a Monte Carlo simulation approach for
using the 56 SNP markers to estimate the log likelihood ratios for
correctly discriminating between the three ancestral groups.
Specifically, we generated the distribution of ethnic affiliation
estimation (EAE/EBA) log-likelihood ratios (7,12,24) and calcu-
lated their summary statistics and confidence intervals (CI). The
equations used for the calculation of the EAE/EBA log-likelihood
ratios are fully described in Ref 7. Using a random number gener-
ator, and the observed allele frequencies in the various populations,
an individual was created in the first and second populations for a
pair-wise population comparison. For this exercise, we assumed
that the allele not observed has a frequency of 1/(2n�1), where n
is the sample size, and that there was linkage equilibrium among all
alleles. A sample size of 200 individuals was created in each pop-
ulation, and each time a multi-locus EAE/EBA ancestral log likeli-
hood ratio was calculated. We repeated this procedure 10,000 times
to obtain the distribution of multi-locus EAE/EBA log-likelihood
ratios for the pair-wise comparison between ancestral groups, and
we repeated this experiment for each pair-wise comparison of pop-
ulations (CA/AA, CA/AI, AA/AI). Simulation data for the most
ancestrally informative 7, 10, and all 56 markers (markers with the
greatest � values) are presented in Table 4.
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TABLE 3—Linear classification probabilities using all 56, 15,
or 30 markers.

TABLE 3A

African (AA) Asian (AI) European CA)
56 Markers Probability* Probability* Probability*

AA (n � 90) 0.9778 0 0.0222
AI (n � 30) 0 1 0

CA (n � 88) 0.0114 0 0. 9886

TABLE 3B

African (AA) Asian (AI) European (CA)
15 Best Markers Probability* Probability* Probability*

AA (n � 90) 0.9111 0 0.0889
AI (n � 30) 0 0.9667 0.0333

CA (n � 88) 0.0227 0 0.9773

TABLE 3C

African (AA) Asian (AI) European (CA)
30 Best Markers Probability* Probability* Probability*

AA (n � 90) 0.9556 0 0.0440
AI (n � 30) 0.0333 0.9667 0.0000

CA (n � 88) 0.0227 0 0.9773

* The lower of the uncorrected and corrected probabilities are shown for
classification into the proper group, and the higher of the uncorrected and
corrected probabilities are shown for classification into improper groups
(17).

TABLE 4—Multi-locus EAE/EBA log-likelihood ratio summary statistics for pair-wise comparisons between populations of African (AA),
European (CA), and Asian (AI) descent.

7-BM* 10-BM† All 56‡ 7-BM* 10-BM† All 56‡ 7-BM* 10-BM† All 56‡
AA/CA AA/CA AA/CA AA/AI AA/AI AA/AI AI/CA AI/CA AI/CA

Min§ 3.31 4.17 7.40 5.91 6.96 11.5 7.34 9.18 12.8
Q1� 3.92 4.87 8.29 6.71 7.84 12.5 8.09 10.1 14.0
Mean 4.06 5.03 8.49 6.91 8.06 12.8 8.28 10.3 14.3
Median 4.06 5.03 8.48 6.91 8.06 12.8 8.28 10.3 14.3
Q3¶ 4.20 5.19 8.68 7.12 8.28 13.0 8.47 10.5 14.5
Max 4.83 6.05 9.74 8.33 9.30 14.2 9.42 11.6 16.2
S.D. 0.22 0.23 0.29 0.30 0.32 0.37 0.28 0.31 0.36
99 CI 3.54, 4.65 4.45, 5.66 7.77, 9.27 6.21, 7.72 7.29, 8.9 11.80, 13.71 7.59,9.03 9.53,11.13 13.38,15.25
95 CI 3.66, 4.51 4.59, 5.5 7.93, 9.07 6.34, 7.52 7.44, 8.72 12.04, 13.50 7.76,8.85 9.64,10.91 13.57,15.00
Observed.EAE/EBA 4.01 4.97 7.93 6.32 7.44 10.5 7.60 9.18 12.1

* Using the seven best markers (BM) for each particular pair-wise comparison of populations.
† Using the ten best markers (BM) for each particular pair-wise comparison of populations.
‡ Using all 56 markers for each particular pair-wise comparison of populations.
§ Minimum value obtained.
� Estimate obtained for the first quartile of individuals.
¶ Estimate obtained for the third quartile of individuals.
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The simulation results reveal that for all three of the pair-wise
population comparisons, virtually all of the multi-locus EAE/EBA
summary statistics increased as the number of markers increased
(namely minimum, mean, median, and maximum). With respect to
the standard deviations for the pair-wise comparisons, the increases
in discriminatory power are significant. Mean (or median) discrim-
ination powers for a given number of markers show that the power
to resolve between AA and CA individuals is less than the power
to resolve between AA and AI individuals, which in turn is less
than the power to resolve between AI and CA individuals:

AA vs. CA 	 AA vs. AI 	 CA vs. AI

From the summary statistics presented in Table 4, the minimum
multi-locus EAE/EBA log-likelihood ratio for the seven best mark-
ers for AA/CA is 3.3, for the ten best markers, 4.17, and for all 56
markers, 7.4. It may be noted that (using all 56 markers), the mini-
mum multi-locus EAE/EBA value derived from the simulation
study was greater than the observed multi-locus EAE/EBA for
CA/AI and AA/AI pair-wise comparisons. This anomaly did not
occur when we considered the seven and ten best markers, and it
was likely due to the relatively large number of homozygous loci
present in the Asian population.

For the purpose of comparing our linear classifier to previous
results described in Ref 7, we re-calculated the linear classification
probabilities for specific pair-wise–ancestry comparisons, using the
7, 10, and 20 SNPs with the most dramatic allele frequency differ-
ences (best � and EAE/EBA log likelihood ratios) between each pair
of groups (Tables 5, 6, and 7). As with the previous linear classifi-
cation results, where SNP markers were selected based on their mi-
nor allele frequency differences among all three ancestral groups,
the Smouse correction (17) was not observed to have a significant
effect (i.e., the sample sizes imposed little bias on the probabilities).

TABLE 5—Probabilities of correct and incorrect ancestral classification
using the linear classifier with the most informative markers for the

inference of European and Asian ancestry.

TABLE 5A

European (CA) Asian (AI)
7 Best Markers† Probability* Probability*

CA (n � 88) 1.0000 0.0000
AI (n � 30) 0.1000 0.9

TABLE 5B

European (CA) Asian (AI)
10 Best Markers† Probability* Probability*

CA (n � 88) 0.9333 0.0667
AI (n � 30) 0.0 1.0

TABLE 5C

European (CA) Asian (AI)
20 Best Markers† Probability* Probability*

CA (n � 88) 0.9667 0.0333
AI (n � 30) 0.0 1.0

* The lower of the uncorrected and corrected probabilities are shown for
classification into the proper group, and the higher of the uncorrected and
corrected probabilities are shown for classification into improper groups
(17).

† Using the best set of markers for resolving between CA and AI indi-
viduals, as determined using the � values of Table 2.

TABLE 6—Probabilities of correct and incorrect ancestral classification
using the linear classifier with the most informative markers for the

inference of European versus African ancestry.

TABLE 6A

European (CA) African (AA)
7 Best Markers† Probability* Probability*

CA (n � 88) 0.9886 0.0114
AA (n � 90) 0.0444 0.9556

TABLE 6B

European (CA) African (AA)
10 Best Markers† Probability* Probability*

CA (n � 88) 0.9667 0.0333
AA (n � 90) 0.0114 0.9886

TABLE 6C

European (CA) African (AA)
20 Best Markers† Probability* Probability*

CA (n � 88) 0.9444 0.0556
AA (n � 90) 0.0 1.0

* The lower of the uncorrected and corrected probabilities are shown for
classification into the proper group, and the higher of the uncorrected and
corrected probabilities are shown for classification into improper groups
(17).

† Using the best set of markers for resolving between CA and AA indi-
viduals, as determined using the � values of Table 2.

TABLE 7—Probabilities of correct and incorrect ancestral classification
using the linear classifier with the most informative markers for inference

between Africans and Asians.

TABLE 7A

African (AA) Asian (AI)
7 Best Markers† Probability* Probability*

AA (n � 90) 0.8 0.2
AI (n � 30) 0.0424 0.9576

TABLE 7B

African (AA) Asian (AI)
10 Best Markers† Probability* Probability*

AA (n � 90) 0.9778 0.0222
AI (n � 30) 0.1 0.9

TABLE 7C

African (AA) Asian (AI)
20 Best Markers† Probability* Probability*

AA (n � 90) 0.9778 0.0222
AI (n � 30) 0.0667 0.9333

* The lower of the uncorrected and corrected probabilities are shown for
classification into the proper group, and the higher of the uncorrected and
corrected probabilities are shown for classification into improper groups
(17).

† Using the best set of markers for resolving between CA and AA indi-
viduals, as determined using the � values of Table 2.



Though the three-way linear classification results showed that 56
SNPs were necessary for resolving between the three ancestral
groups with at least 98% accuracy, when SNPs were selected based
on pair-wise resolving power, only 20 SNPs were necessary to ob-
tain classification probabilities of 97% when attempting to resolve
between CA and AI individuals (Table 5C), 10 SNPs were required
for 97% probability when resolving between CA and AA individu-
als (Table 6B), and 20 SNPs were necessary for a 93% accuracy re-
solving between AA and AI individuals (Table 7C).

Discussion

We have described a battery of 56 human pigmentation and
xenobiotic metabolism SNPs that can be used to reliably classify an
individual DNA specimen into one of three major ancestral groups.
Though it appears that the discriminatory power for the 56 SNP
battery is inherent to 15 especially powerful SNPs, the entire bat-
tery of 56 is necessary for accuracy levels conducive for forensic
use. In terms of simulated EAE/EBA log likelihood values, the
power of discrimination for this battery of 56 SNP markers (log
likelihood of about 2, or 1 in 100 misclassification rate) appears to
be similar to that of previously described STR collections (7).
Though one might expect that, given the nature of the problem and
differences in variance/covariance matrices between the popula-
tions we have studied, quadratic discriminate methods would be
more appropriate than linear. However, use of the quadratic
method led to matrix singularity problems because, given our sam-
ple size, some of the most powerful markers had frequencies that
were too low to be detected in at least one population. Rather than
introduce measurement error by assuming a minimum frequency of
(1/2n�1) in these populations, we opted to use the linear technique
instead, and the results were generally satisfactory. In addition, we
presented simulated log likelihood ratios as calculated (and criti-
cized) by others, but we did so only to facilitate a direct compari-
son of marker strength with those presented by Shriver et al. (7).
The values we obtained using the linear discriminate method sug-
gested that about 1% of the cases would be unresolvable with our
battery, but the average simulated EAE/EBA from our work was
about 10 (which would correspond to a misclassification rate sig-
nificantly lower than 1%). However, these EAE/EBAs are likely to
be gross overestimates. First, the SNPs we are using come from a
small number of genes, which would imply the possibility, indeed
the probability, that several are linked to one another in gametic
disequilibrium. In fact, LD calculations for several reveal this to be
the case, and, as such, the log likelihood values are not strictly
additive as we have presented (meaning our log likelihood
EAE/EBAs are overestimates). Second, the log likelihood ratios
are derived from simulations. Whether one uses a Gibbs sampler or
a Monte Carlo approach such as we employed, simulation is prob-
ably not the best approach for the estimation of EAE/EBAs from
our data because a number of loci were monomorphic in one or
more groups. For the simulation, we addressed this problem by
assuming a minimum frequency of (1/2n�1) for unobserved alle-
les, but this adds to estimation error, the impact of which may be
most acute for those markers that are the most powerful (those for
which the minor allele is rare in some groups but frequent in
others). This leads to an overestimation of the log likelihood
EAE/EBAs. Thus, though the log likelihood method is useful for
ascribing value to particular markers or marker sets for ancestral
inference, as others have pointed out previously (12), it is probably
not best suited for predictions of classification accuracy. Therefore,
we conclude that, though our SNP battery shows a theoretical
power for EAE/EBA that is similar to previously reported STR

batteries (before criticism by 12), its true accuracy as practically
and realistically demonstrated with the linear classifier is closer
to 99% (linkage between markers and ancestral mixtures notwith-
standing). This gives a log likelihood EAE/EBA of about 2.
Though not validated with actual classifications, the best (criti-
cized) estimates obtained for STR markers also give a log likeli-
hood of about 2 for the distinction between individuals of European
and African ancestry (7,9,12). Thus, the classification accuracy of
our SNP classifier rival the (criticized) projections obtained from
previous STR data, though, as one would expect from their simple-
allelic structure, more SNPs (56) are required to attain this power
of resolution than STRs (6,10). Ultimately, we expect that blind
sample classifications, not simulations, will be required to learn the
true accuracy of both methods.

Given uncertainties with self-reported (or other) ancestry deter-
minations (i.e., were any unreported or unperceived mixtures
present?), the accuracy rate we report herein (99%) seems to be ad-
equate and realistic. In fact, due to ancestral mixture and reporting
uncertainty, one might effectively argue that it is unreasonable to
expect any classifier for the inference of major ancestral affiliation
to test better than a log likelihood of 2 in discrimination power (1 in
100 misclassified) (25). However, as promising as these results
appear to be, there remain several other issues of a more practical
nature that need to be solved before they will be of practical foren-
sics use. For example, the methods and markers we have described
are relevant only for the inference of major ancestral affiliation, but
many populations have significant levels of admixture. Thus, a test
for the inference of ancestral proportions in individuals may be
more useful than the method described here for the inference of ma-
jority ancestral affiliation (though using our markers with other sta-
tistical methods for this purpose would seem relatively straightfor-
ward). In addition, over 70% of the crime scene samples received
by the average forensics laboratory contain a mixture of two donors.
When one of the donors is known, data for the second can be ob-
tained through the process of subtraction and major ancestral affil-
iation can be inferred using the methods and markers described
herein. However, for the panel to be useful in cases where both are
unknown, other statistical methods for inference will be required.
Thus, the markers and methods we have described are merely a first
step towards the development of an efficient and resilient multiplex-
based system for the inference of ancestry in a practical forensics
setting. Based on our results, and the observations on unusually high
ancestrally informative SNP frequencies in the pigmentation and
xenobiotic metabolism genes, it seems that the markers we have de-
scribed herein are well suited to be part of such an efficient and re-
silient system. Nonetheless, in the present form, the SNP battery we
have identified may be a good replacement or compliment to exist-
ing STR methods for the inference of majority ancestry. In particu-
lar, our battery could be useful in cases where STR-based inferences
are not statistically satisfying or where sample integrity is a prob-
lem (in which case, STR or RFLP tests are less useful due to the
length of their amplification/digestion targets). Until previous
works described how STR markers could be used for ancestral pro-
filing (2,7,8), DNA testing was merely a quantitative tool capable
of producing numeric “bar-codes” for matching specimens with in-
dividuals. The classifier we describe here is one of a handful of
forensics tools for the inference of ancestry, and the very first SNP-
based method for this purpose that we know of.
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APPENDIX I

IUB codes indicate degenerate SNP sequences. Brackets indicate
an insertion/deletion polymorphism.

217485
AACCTTTTCAAATTAATGTTCCAGTTTGAAGAC
CAATCAAATATATTATTTAGTCAACATTTTGTC
TTTTTATTTTTATCTTCCTTTCCAAATAGGTCGG
GAGTTTAGTGTACCTGAGAT

217486
TATCAGCCTTTTATGTATTTTCCAAGTAAAATA
T T A A C A T A T T A Y T T C A T T G G T C T T C T T
ACTGATCAGTATCAATGCTATGCTG[AAGA]AT
ATGAAAAACTCCAGAATCCTAATCAGT

217487
TTTATCTGGTTCTATATGAATGCTATTTTTTCCC
TTCTCTTCTAACATGAAATATATTTTTTGAATA
TAATAGATTGAGTTATTAACTGTATTTTCTTTC
ACTTTATTACCTTCTTTCTA

217489
AGAAACAAGTTTAAGTTATGTATCCCTGATTGG
TTACTGGGTTTTCCTATATTCAAAAATATTAAT
TAAAGAA[AATT]AATTAATTATGTGTAGTTATA
AACCAATGAAATTTTGATTA

217468
AGGTCAGCACCCCACAAATCCTAACTTACTCA
GCCCAGCATCATTCTTCTCCTCTTGGCAATCAC
TGTAGTAGTAGCTGGAAAGAGAAATCTGTGAC
TCCAATTAGCCAGTTCCTGCAGA

217473
GAACACTTTAAATCCTGAAAGTGCATTATAATC
CTTAATTTATTACCAGTTTATTATCACTATTTTT
GAAGTATAAAGAATATATTCAACATCTTTCCAT
GTCTCCAGATTTTAATATAT

217480
CACATTTTTATTCTCTTCAGAAAGGATGATATT
CCCCTTTATTTTACATTTCTGCTCCAATCCCATT
TTTCTGATGAAGAAACTGAGGCTTTGGAGTATT
AGGTGTAACTTTCCCAAGCT

217438
ACCTCCCTGGTCCCCGTTTGTCAAAGAGGATGG
ACTAAATGATCTCTGAAAGTGTTGAAGGGAGA
GGGTGTGAGGGCAGATCTGGGGGTGCCCAGAT
GGAAGGAGGCAGGCATGGGGGAC

217439
ACCTCCCTGGTCCCCGTTTGTCAAAGAGGATGG
ACTAAATGATCTCTGAAAGTGTTGAAGGGAGA
GGGTGTGAGGGCAGATCTGGGGGTGCCCAGAT
GGAAGGAGGCAGGCATGGGGGAC

217441
ACCTCCCTGGTCCCCGTTTGTCAAAGAGGATGG
ACTAAATGATCTCTGAAAGTGTTGAAGGGAGA
GGGTGTGAGGGCAGATCTGGGGGTGCCCAGAT
GGAAGGAGGCAGGCATGGGGGAC

217452
TAGCGTGTCCCTCTCTCTAGGTAGAAAGGGAA
CCATACAGGAATATTTGCTGAATCTTGGCCTAT
GTCTCACGCCTGCTGCCTGTGCTCACTGCTCTT
CCAGCTGTGATATTGGGCGTTG

217455
TTGCCCAAGAACCATGCTAGAGGTATGAACTA
ACAAGCTACAGCATTGAAGAGTACTTTTCAAG
CAGCTTCCCTTAGATGGCACGTTGGTGGTAGCT
GTATGTGTCTGTGGGGTGTCCAG

217456
CATTCCAGTCCAGCTCGTGTCTGCTTTGTGTGA
CTGCAGTACATGCTACAAGCAGTGGGGCCAGA
ATACCGATGGCATTACGGGACTGAGGGTCATC
ACCTTGTGACAAATTAACCATCA

217459
GGTGGGCAGCCTGCCCTGGGAAGAAGGGCGCC
TTTCCTTTTGGTTTCCTGGGCAGGAGGGGGTTT
CCTTGTAACACAGTACTTTGCCATTTTCTTTCA
AGTTCGAGAGGTTACATTTTTC

217460
TTAACCAGCTTTACCTTAGCCACTGAGAGATTT
CTGACAGCACTGCGTATTTGTTTTTTTAAAATT
AAGCCAATCTATAGTGAAAGAAAAGAGATGAA
TGGTTTACTGGGAGTGTGGGGG

554363
AAAGCAATGTGGTAGTTCCAACTCGGGTCCCC
TGCTCACGCCCTCGTTGGGATCATCCTCGACAT
CTCAGACATGGTCGTGGGAGAGGTGTGCCCGG
GTCAGGGGGCACCAGGAGAGGCC

554368
AAAGCAATGTGGTAGTTCCAACTCGGGTCCCC
TGCTCACGCCCTCGTTGGGATCATCCTCGACAT
CTCAGACATGGTCGTGGGAGAGGTGTGCCCGG
GTCAGGGGGCACCAGGAGAGGCC

554370
GCCTGCAGCTGGCCTGGACGCCGGTGGTCGTG
CTCAATGGGCTGGCGGCCGTGCGCGAGGGGGA
GGCAGGGGGTCCACTTGATGTCGAGACTGCAG
TGAGCCATGATCCTGCCACTGCAC

554371
CTGGGCAGAGAGGGCGCGGGGTCGTGGACATG
AAACAGGCCAGCGAGTGGGGACAGCGGGAAC
GTTCCCACCAGATTTCTAATCAGAAACATGGA
GGCCAGAAAGCAGTGGAGGAGGACG

M
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554353
TCACAGGTGTGTGCACAGACATAAACACATGG
AAAAGTTTCACAAAACACTTACCATTATGTATC
ATATATAATTGTATGTGCTATACTTTTTATATG
ACTGGCAACACAGGTTTGCTTC

664784
CCTAGCTCAGGAGGGACTGAAGGAGGAGTCGG
GCTTTCTGCGCGAGGTGCGGAGCGAGAGCAGC
AGAGGGCAAAGGCCATCATCAGCTCCCTTTAT
AAGGGAAGGGTCACGCGCTCGGTG

664785
CCTAGCTCAGGAGGGACTGAAGGAGGAGTCGG
GCTTTCTGCGCGAGGTGCGGAGCGAGAGCAGC
AGAGGGCAAAGGCCATCATCAGCTCCCTTTAT
AAGGGAAGGGTCACGCGCTCGGTG

664793
TCCCTCTATCCAATTTATAGCAGCAGGTTTCTT
GTCAGTACAATAGTTACCACTAACGGCAGCCA
ATCCAGACAAACATTTATATTTAAACATTTATA
TTTAAACAAAAGGCCTCTCTGA

664802
CCCAATTCTTGAAGTATTAAATATCTGTGTGTT
TCCAAGAGAAGTTACAAATTTTTTAAGCTGGG
ACTAGAGTCTGCACATTTAACTATGGGTGGTGT
TGTGTTTTGTGCTTAGATGGTC

664803
TTAGTTTTTCATAATTTTTTAGATAATATACAT
ATGATCAGTGCAGTTACCTGTATGTTTTCTCCC
AAGATGGGGCAGCTCCGATGAGGAGGTGGGGC
AGCTGGAGGAAAAGGATCTTCT

712047
TAACAAAAAGTCTTCATCCCATCCCTGTCTACC
ATCTGCCCAGTTCTTTGCTACCTACACGAGTCT
CACTCTGTGGCCCAGGCTGGAGTGCAGTGGCT
TGATCTTGGCTCACTGCAACAT

712043
AGAGAAACCCAGAGAGTCAGAACTAGGCTTGT
GGACTCTATGCCTGATACATCATACCTGAGCCA
ATCCAGACAAACATTTATATTTAAACATTTATA
TTTAAACAAAAGGCCTCTCTGA

712064
AAATTTGAGGTGGTGTCACAGTCTTTTCTTTTA
CCAAAGCTTTACCCATAGTTTTCCTTCATGAAA
ATAAAAATAAAAATAAATAAATAAATAAATGA
AAGAAAGAAAGAAAGAGAAAGG

712037
TGAGGTGAACACAAAGGGATGTTCTTCAGAGA
TTACAGTCCAGCCCTGAAGCAACAACTAAGAT
TTTGAATCAGTAGTTCAAGGGTGGGGTTTGAG
ATTTTGCATTTCTAAATGAGCTCT

712051
GAAACAGTTAAATTATTGTCTAAAGACTTAGA
ATCAATAGAAAGGAATGTCTGGGTCAAGGTGC
TTAGGGATGGAGGACCAGACAAGGTTAGAGGG
ACTTTGGTTCTGAGGCAGCTTCTA

712052
TGTGTTTGTGCCATTTGTATTTGATCAGCTGCT
GGGGCACTTCTCCCTCTGACTGTGTGTTCTACC
CGCCCGGCCAAAACAGCCCCTACTGCCCCCTG
GCGGCAAGCCTGTGTACGAGGT

712058
ATGGCCAGGGTTAGAAAAGAAAGGTATAGCTG
TGATACTCTTGCAGGCCCCAAGTTCATAATCAT
TCAGGTCATTATATGTATTTTTTTGGGAAAATA
GAGAGTGAGCACCTTTTCCAGC

712054
TTTTTCTCTTGTTCATTTAATGCCGTTGGGCTTG
TTTGTGTTTTGTAGGATTCCTGGCGCCATTGAC
TTATTTTTAAAAATATTGCTCCATTGTCGTTTTG
TTTATATCTTGATTTTGGA

712055
CCCCAGGCTGGGCTGCCCAGATGTCTCTTCCTG
TGGAGAGGAGTTTCAGGTCTGCAGAAGTCCAA
TTCTACATTAATTCCTCCACTATGAGCTTCCAC
AGTAACCTAATCTTACCCTGAG

712057
AGATTTCAAAGGAACCGGGCAGGGTGGGCCAG
GTCTCCCCTGGTCCCCAAGAGCTGACCTAGATC
GTGGATAGCCCAGAGTGTCTCAGCACCCCTTTG
AGATTGTGCCCTGGGCCTCTGC

756251
CAGCTGGATGAGCTGCTAACTGAGCACAGGAT
GACCTGGGACCCAGCCCAGCCCCCCCGATGAG
TGCAAAGGCGGTCAGGGTGGGCAGAGACGAG
GTGGGGCAAAGCCTGCCCCAGCCAA

615921
CATAGGAGGCAAGAAGGAGTGTCAGGGCCGG
ACCCCCTGGGTGCTGACCCATTGTGGGGATTTG
CATAGATGGGTTTGGGAAAGGACATTCCAGGA
GACCCCACTGTAAGAAGGGCCTGG

615926
CTCACCCCAGCTCAGCACCAGCACCTGGTGAT
AGCCCCAGCATGGCTACTGCCAGGTGGGGGGG
CCTGAGACTTGTCCAGGTGAACGCAGAGCACA
GGAGGGATTGAGACCCCGTTCTGT

756239
CATCTCTAATGAGCCCTAGATTATTCCTGGTGT
CAGGGAGATTAGGAAACACCTTCATATAACAG
AAAAACAAGCAATCAATCTCTAGTCTCGGTTC
ATACTAAGAGCCATCACCCCAACAC
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809125
AAACATAGTAGTTGCTCAAAATATTTGTTAAA
AATATTTTTAATGTTAAAATGTAAGTATATCAC
TTGAGGTCAGAAATTAAAGACCAGTCTGGCCA
ACATGGCAAAACTCCGTCTCTACTG

869787
GTGTTAGGTATTATGACTAGTCAATTCAGTAAC
TCCTTCAGGTAAACATGTTAATTGTCATCTGTG
TCTGGGCCTGGGACAGACCGCTGTGGCTCATC
ATCAGGGAGGGGCAGATGTGAGGC

869777
CCCTTACCCGCATCTCCCACCCCCARGACGCCC
CTTTCGCCCCAACGGTCTCTTGGACAAATGAGT
GCAAAGGCGGTCAGGGTGGGCAGAGACGAGG
TGGGGCAAAGCCTGCCCCAGCCAAG

869784
GAGGGACTTGGTGAGGTCAGTGGTAAGGACAG
GCAGGCCCTGGGTCTACCTGGAGATGGCTGCC
GTGAGCAACGTGATCGCCTCCCTCACCTGCGG
GCGCCGCTTCGAGTACGACGACCCTC

869785
GGGAGGGACTTGGTGAGGTCAGTGGTAAGGAC
AGGCAGGCCCTGGGTCTACCTGGAGATGGCTG
GCTGCTGGACCTAGCTCAGGAGGGACTGAAGR
AGGAGTCGGGCTTTCTGYGCGAGGTGYGGA

869772
TTGTATTAATAATTCTTTTAACTGAGTGGTCTG
TATTTTTTAAAAAGAATATGCTTGTTTAAT
CACTATTTATCTCATCTCAACAAGACTGAAAGC
TCCTATAGTGTCAGGAGAGTAGAAAGGATC

869745
TTTGTGTGAAATGTCATTTTACATATGGGTTCC
ATTTTGAAAGTGGTTTGGGAAGGGGGCATAAT
TAATTATCAGGCAGCAATCCACATGCACTTAA
CAGTTCTGACGTGAGAGGACAAGAAACAC

869769
CCTTAAGTCATCCTATTTTACACAAGCCAAACT
GAGGCTCTAGGAGGTAGGAAGATAGTAGAGAC
CGAGGTTCCTCTGTCCACGCTTGGCACCAGCAG
CRGGCACTGTGCCAGGCCAGGACTGGGT

869794
TCTTGGAGAGGAGTTTTCTGGAAGAGGCATTTT
CCCACTGGCTGAAAGAGCTAACAGAGGATTTG
AACATCACAGGCCATCTGAGTGGCAAGTATAA
TCATCATCATGTTTCTATTTAAAATTCAG

869797
TTTCTCCCTCATGACGCTGCGGAATTTTRGGAT
GGGGAAGAGGAGCATTGAGGACMGTGTTCAA
TGATTGATCTTGGAGAGGAGTTTTCTGGAAGA
GGCATTTTCCCACTGGCTGAAAGAGCTAACAG

869798
GCCCGCTGCCTTGTGGAGGAGTTGAGAAAAAC
CAAGGGTGGGTGACCMTACTCCATATCACTGA
TGGTAGGTGTGCAWGTGCCTGTTTCAGCATCT
GTCTTGGGGATGGGGAGGATGGAAAACAGAGA

869802
TCCATTATTTTCCAKAAACGTTTTGATTATAAA
GATCAGCAATTTCTTAACTTAATGGAAAAGT
TGGGAATGTAAATTTAGCATTTGAACAACCATT
ATTTAACCAGCTAGGTTGTAATGGTCAACTC

869809
CMTTGACCTTCTCCCCACCAGCCTGCCCCATGC
AGTGACCTGTGACATTAAATTCAGAAACTATTC
CTTTATTGAAGAGAATTTTCTCCACTTATATGT
GTACAGATTTTTCTTAATATCTGGTTTAT

869810
TTTAAACCTCTACCATCACCGGGTGAGAGAAG
TGCATAACTCATATGTATGGCAGTTTAACTGG
TATAATGATGTTTGGATACCTTCATGATTCATA
TACCCCTGAATTGCTACAACAAATGTGCCAT

869813
TAGGTTGGTTGAATTCTGCCTCTAGGTACACCA
GTGAGGTACCCAAGAACTCCTCCTGGAAGATT
CTGGATGAAGGTGGCAATTTTAAGAAAAGTAA
ATACTTCATGCCTTTCTCAGCAGGTAATATA

886933
CCTTACTGGAATTTTGCAACGGGGAAAAATGT
CTGTGATATCTGCAYGGATGACTTGATGGGAT
AATCATTTTCAGAAATGTCTGCATAATGAGTTG
AGTTTCATTCCCTCTAATGCCTAAATGACAC

886937
TAGAAGTCATGTGTCTTGTGTTGGAATTTCACA
GAAAATGTTTCCTAAGAAAATGTGAAAAATAC
TCCTTGGAAGATTATGATACCCTGGGAACACTT
TGTAACAGTAAGTTCCAAATGATAGCTTGG

886895
TGCTTTGTGTGACTGCAGTACATGCTACAAGCA
GTGGGGCCTCAGAAGCTGGTGGCAGAAATGCG
TCACTAATGAAAGGCTGCCTCTGTTCTACGAGC
CTGCTCACTCTGGCTTGTACTCTCTCTGTG

886896
GAGGTGGAAGACATAGGCCTTGCTTTCCTGGA
GATTGTGGTCTCATGGGGAGACATGTGGACAA
TGGCCAGGCATACCGGCTCTCCCGGGGACGGG
TGTGGGCCATGATCATCATGCTCTGTCTCATC

886894
TCGGAAGGAGTGGCACTGGGGATGGGGCTCTC
ACTGTCAACCGCTGGGCTGTCCCATCTCTCTAT
GCGTCGCCCGGAGGCTGCACACCTTCCACAGG
TACCGGGCGGGGTCCTGCTCAGACTGTGCTT

Y

K

S

R

Y

Y

Y

M

S

Y

W

S

Y

M

Y

Y

K

R

R

Y
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886892
GGAGGGAGAGAGAGATGCATCTCTGGCCCCTT
AGACTCTGTGCCATGGGTCCTCAGCCCCTCCAG
CTGCAGGAGTCAGAAGGTTGTGCAGAGTAAAT
GAGCTGTGGTTTCTCTCTTACAGCATAGGAT

886934
TGTAAACAGAAGCAGAGAGTATTAATGTGGTT
TCTGTGATCTAGGAAATGTTGCAAGAGCCTTC
TTCTCCCTTCCTTACTGGAATTTTGCAACGGGG
AAAAATGTCTGTGATATCTGCAYGGATGACT

886993
GGGCAGGGTATACTTGCTATGTTAAGTTGTATG
GCTCTGAGCAGCACTTTCAGCTGCTCAGTAA
AAATCCCTGGACACACATATAGGCACAAAACT
GCTAGCAAGAGGCTCCATTCAAGGAGTGAGTG

886994
GCAAGAGGAGAGCTCAACATGTACCATGCCCT
GCTAATGCAGTCTAGTGCTGTGCTTGAATATA
TCTGCAGGGCAGGGTATACTTGCTATGTTAAGT
TGTATGGCTCTGAGCAGCACTTTCAGCTGCT

951497
TTATAAAGATAAATTAAAAGAAGGTGGATTAG
GCAGGATACAAAAGAAAGAAAAGTAAAATAA
GTTTCATTTTTTTTTAATGAACAGGATTTGCTA
GTCCACTTACTGGGATAGCGGATGCCTCTCAA

951526
AGTTCAAGCAGTGAGACTACCTCTGTGCCAGT
ATCCTGGGCTGTCTCTTCCCTTCACTCTTGGCA
CATTAAAAATAGACATTTTATTACAAGAGTGT
AGAGAAGGGAGACCAATAGAAGGTAATTGAA

S

Y

R

M

R

R



J Forensic Sci, Sept. 2004, Vol. 49, No. 5
Paper ID JFS12477

Available online at: www.astm.org

Erratum

Erratum/Correction of Frudakis et al. A Classifier for the SNP-based Inference of Ancestry. J Forensic Sci 2003 July;48(4):771–782.

It has come to the attention of the Journal that there is incorrect 5′ and 3′ flanking sequence appearing around the IUB variant for each
SNP in Appendix 1. Below is the new/correct Appendix 1.

The Journal regrets this error. Note: Any and all future citations of the above-referenced paper should read Frudakis et al. A Classifier for
the SNP-based Inference of Ancestry. [published erratum appears in J Forensic Sci 2004 Sept;49(5)] J Forensic Sci 2003 July;48(4):771–
782.

217485

TACCTTCTTTCTAATACAAGCATATGTTAG M

ATTAAAGTTCTAGGCATACTTTTCAAAGCT

217486

TGGGCATTTCTAAAATGTTAAAACATAAAC W

CATTTCCATTCATGGATATTTGTCAACAGA

217487

TAAAGAAAACCACAGTTATTAATTAAAGAA [AATT]

AATTAATTATGTGTAGTTATAAACCAATGA

217489

GTATTTTCCAAGTAAAATATTAACATATTA Y

TTCATTGGTCTTCTTTTTTATCTGGTTCTA

217468

ATGTGTCAATGGATGCACTGCTTGGGGGAT M

TGAAATCTGGAGAGACATTGATTTT[TCT]GC

217473

TCCTCTGCAGTATTTTTGAGCAGTGGCTCC R

AAGGCACCGTCCTCTTCAAGAAGTTTATCC

217480

CATTTGCAAAATTGTAACCTAATACAAAGT R

TAGCCTTCTTCCAACTCAGGTAGAACACAC

217438

TTGTCGGASCTGCTGGTGAGCGGGASSAAC Y

TGCTGGAGACGGCCGTCATCCTCCTGCTGG

217439

GACCGCTACATCTCCATCTTCTACGCACTG Y

GCTACCACAGCAYCGTGACCCTGCCGYGGG

217441

CTGYGCTACCACAGCAYCGTGACCCTGCCG Y

GGGCGCSGCRASSCGTTGCGGCCATCTGGG

217452

TTCTGCAGAGAGACGGTGTCCATCAGCATC Y

GGGCCTCCYTGCAGCAGACCCAGGCTGTCC

217455

TTCTTTCCAGATCGTGCACAGAACTCTGGC R

GCCATGCTGGGTTCCCTTGCAGCACTGGCA

217456

GTGTGTGTGGCCAGGCATACCGGCTCTCCC R

GGGACGGGTGTGGGCCATGATCATCATGCT

217459

CGGGATTCTGCTCGCCAAATGCCTGACAGT K

TTGGGATTTGTTATCTTCATGTTTTTCCTC

217460

AGTGGAATGGGCAACCCTTCTGTTTTTTGC M

GCGCTCTTTGTTCTGATGGAGGTAAGATTT

554363

TCRCATGCCCTRCAYCACTGCCGTGATTCA Y

GAGGTGCAGCGCTTTGGGGACATCGTCCCC

554368

GGCYACTGCCAGGTGGGCCCASTCTAGGAA M

CCTGGCCACCYAGTCCTCAATGCCACCACA

554370

ACCCGCCCTGGCCTGACTCTGCCACTGGCA R

CACAGTCAACACAGCAGGTTCACTCACAGC

554371

CACCGGCGCCAACGCTGGGCTGCACGCTAC Y

CACCAGGCCCCCTGCCACTGCCCGGGCTGG

554353

ATTTTGCTGTAAAATTAAGCACTTGAATAG R

TAAAATTTGYATTAGTTTCTAAACTGGAGT

664784

GCCGACCGCCCGCCTGYGCCCATCACCCAG R

TCCTGGGYTTCGGGCCGCGYTCCCAAGGCA

664785

CCCGCCTGYGCCCATCACCCAGRTCCTGGG Y

TTCGGGCCGCGYTCCCAAGGCAAGCRGCGG

664793

TTGGACACAATGGATTAGGCTGATATGAC M

AAAGAGTTTGGAAAAGACCAATTAAAATA

664802

GATCACTAGCACATCATTTGGAGTGAACAT Y

GACTCTCTCAACAATCCACAAGACCCCTTT

664803

TGTGGACTACTATTTCCTTTAATTTATCTT K

CTCTCTTAAAAATAACTGCTTTATTGAGAT

712047

TGTCCTTAAAACTCTTCTCATTGCCTTAC Y

TATGATGTATTTTTAAACTGGCAAATATA

712043

CCCAATGCCCATGTTCCAGTTCAGAACTGT Y

GGGCTATTCAGGCTGTCTTCTTGGTGCAAG

712064

GTAAATGAGCTGTGGTTTCTCTCTTACAGC R

TAGGATATCTGACGGGATTCTGCTCGCCAA
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712037

TGCAGTTTTACCCAATAAGGTGAGTGGATG R

TACATGGAGAAGGAGGGAGGAGGTGAAACC

712051

CAGCCTAATTACATTCCATAAATGTTGGTA W

CCTTTCCTTTGCTATCTCCGCAAATGTAAG

712052

AGAGAGAATAGACCAGACACCTAGACTTTA R

CAACATTCTCAAAGAACAAGCCATGGAAAG

712058

GTCCCTGCACGTTGCAGGGCCCGCCCTCTG R

CGGGTGTCCCTGACCACCAGCCCGCTCCTG

712054

TAATTAGGATATCCATAACCTCAAACATTT R

TTGTTACTTGTTTTGGGAACATTCCAAGTC

712055

ATCTATCATTTCCATTTGGTTCTTTTTTCT R

TATCTTTTGTTTCTTCCCATAGTTTTTCAT

712057

TGTGTGCACCAGTGTGAACTGTGTAGGTT K

TGTGTGGTCCCCTGTGCCTGCTGTATGTC

756251

GCGACCCCTTACCCGCATCTCCCACCCCCA R

GACGCCCCTTTCGCCCCAACGGTCTCTTGG

615921

GCACAGGATGACCTGGGACCCAGCCCAGCM M

CCCCGAGACCTGACTGAGGCCTTCCTGGCA

615926

ACCTCGACCACGCTGGCCTGGGGCCTCCTG Y

TCATGATCCTACATCCGGATGTGCAGCGTG

756239

AGTCTCACTATTATCCAGTGCAGTGGTGCA R

TCACAGCTCACTGTAGCCTCTAACTCCCAG

809125

GCAATTCTTAAATCTTGTGCTATGAAGAAA Y

GCTATTAATCCTTCCTATTAATGTAAACTG

869787

GAGACTCAAGGCTCTTAATAAAATCTTAAA K

CATTTGAGCTGGAGGAATACCTGGAAATCA

869777

CGCGTGGCGCGAGCAGAGGCGCTTCTCCRT S

TCCACCTTGCGCAACTTGGGCCTGGGCAAG

869784

GACTGGGGCCTCGGAAGAGCAGGATTTGC R

TAGATGGGTTTGGGAAAGGACATTCYAGG

869785

GCRTAGATGGGTTTGGGAAAGGACATTC Y

AGGAGACCCCACTGTAAGAAGGGCCTGG

869772

TGTCATTAACTTTTTAAAAATCTACCAA Y

GTGGAACCAGATTCRGCAAGAAGAACAA

869745

AATCACAGAAATTAACTTGCTGGAAATC Y

GTTCCCAATTCTTCCTTCAGCTCCAAGG

869769

TGGCAGCTCCCCAGATAACTCCCACCCC M

GCCTTAGCCCAGAGTGCCCCTCCCTCTT

869794

AATAGTAACTTCGTTTGCTGTTATCTCT S

TCTACTTTCCTAGCTCTCAAAGGTCTAT

869797

GAGGATGGAAAACAGAGACTTACAGAGC Y

CCTCGGGCAGAGCTTGGCCCATCCACAT

869798

TGGGATCTCCCTCCTAGTTTCGTTTCTC W

TCCTGTTAGGAATTGTTTTCAGCAATGG

869802

GTAAGATAATTTCTAAACTACTATTATCT S

TTAACAAATACAGTGTTTTATATCTAAAG

869809

TTGCTACAACAAATGTGCCATTTTTCTCC Y

TTTCCATCAGTTTTTACTTGTGTCTTATC

869810

ATGCTGTGGTGCACGAGGTCCAGAGATAC M

TTGACCTTCTCCCCACCAGCCTGCCCCAT

869813

TGCCTCCTCTGCAGTGGTACAATTACTCT Y

TGTACATGATCAAGAGCACTGTTCTGAAT

886933

CCAGTACCTTATTGTCTGAAGAGAGCTAA Y

AGAAATAGACTGTCAGAGAGTAGACCAAA

886937

TAAACACCTAGAATGTTCAAGGTACTCTA K

AAGTTGCTCCAGGGGAAACAGAAAGTGCC

886895

TAAGGTACGCAAAGCACCTCTGCCGTGGG R

GTTGCGGCCAGGTTCTGGCAGGCAGGGGC

886896

CCATTCTCAGGTGCATGAAAAGGTGGGGGC R

GTTGAGCCCACAGCTCACTGCATTCCAGTC

886894

TAGTACATTTTATCTAACCCTCACTGAGCT Y

TGCAGGGGGTACACAGCCGAGTTTAAGGAC

886892

GCTTTGGTTCATAGGCTTTGTCACATTCTG S

ATGGGAAGGTTTCAGAGCCTGTTCCCAGAC

886934

TGTGATCTAGGAAATGTTGCAAGAGCCTTC Y

TTCTCCCTTCCTTACTGGAATTTTGCAACG

886993

AAGATTATCCTTGTCTTCTTCTTTTCCCC R

TAGATGATCTTAGTAGCCATATTTTCAGA

886994

TTGCTTTTTGGTGAAATAATTTCCATGATT M

CTTCCTAAATATTGAATATATACACATTTA

951497

AAATAACGTGCTCATTGGATTTAAATAGA R

GGTGCCTATCAAATGTGATTTAAGTTATT

951526

CCCCGCAGACACAAGTCCCCAGCCCCTCC R

GGACAGCAATAAGGGTCTTACAAGGCCAG


